﻿ 有限元分析与应用 | Finite Element Method (FEM) Analysis and Applications | eggheads.ch

# 有限元分析与应用 | Finite Element Method (FEM) Analysis and Applications

edX
Kurzbeschreibung
Learn the basics of Finite Element Method (FEM), a numerical solution for structural analysis, and demonstrate its applications with MATLB a... mehr...
Learn the basics of Finite Element Method (FEM), a numerical solution for structural analysis, and demonstrate its applications with MATLB and ANSYS. æ¬è¯¾ç¨ä»æ°å­¦åå­¦åçãæéåå»ºæ¨¡åè®¡ç®æºå®ç°ç­æ¹é¢ï¼å®æ´éè¿°éå¯¹å¤æå·¥ç¨é®é¢åæçæéåæ¹æ³ã weniger
Kursarten
E-Learning
Fachbereiche
Kurslevel
Professionel

Dieser Kurs ist neu hier. 0 User folgen diesem Kurs und erhalten Bescheid, wenn es Neues gibt - Kurs jetzt folgen.

Du hast den Kurs besucht? Kurs jetzt bewerten.

Hier kannst du der Eggheads Community deine Fragen zu diesem Kurs stellen. Auch Kursleiter können mitdiskutieren.

Du must angemeldet sein um zu antworten

Kursinhalt
Do you want to become an expert at structural analysis? Finite Element Method (FEM) is a powerful tool. FEM is an effective numerical technique for partial differential equations (PDEs) in engineering. The fact that modern engineers can obtain detailed information for structural, thermal, electromagnetic problems with virtual experiments largely gives credit to FEM. The finite element method provides infinite possibilities for engineering, and this course provides a detailed introduction of FEM and its applications in engineering and beyond. This course is divided into 15 lessons, which introduce basic equations of mechanics, mathematical principles of FEM, realizations in both discrete and continuum structures, various applications in engineering and skills at modeling with FEM software. Examples are demonstrated with MATLAB and ANSYS. æéåæ¹æ³(finite element method)ï¼åºäºæ°å­¦åå­¦åçï¼éç¨è®¡ç®æºä¿¡æ¯ååæææ®µï¼å®æ´è·åå¤æå·¥ç¨é®é¢åç§å­¦ç ç©¶ä¸­çå®éåç»æï¼ä¹è¢«ç§°ä¸ºä¸ç§åºäºè®¡ç®æºä¿¡æ¯åå¤ççâèæå®éªâï¼å¨æ°å­¦ä¸å®æ¯æ±åå¤æå¾®åæ¹ç¨è¿ä¼¼è§£çææå·¥å·ï¼æ¯ç°ä»£ä»¿çææ¯çéè¦åºç¡åçãæéååæçåå­¦åºç¡æ¯å¼¹æ§åå­¦ï¼æ¹ç¨æ±è§£çæ°å­¦åçæ¯å ææ®å¼æ³åæ³å½æå¼åçï¼å®ç°çæ¹æ³æ¯æ°å¼åç¦»æ£ææ¯ï¼æç»çè½½ä½æ¯æéååæè½¯ä»¶ãæéåæ¹æ³å·²æä¸ºæºæ¢°ãèªç©ºèªå¤©ãåæ¨ãåå­¦ç­ä¸ä¸å­¦ççå¿å¤ç¥è¯ã è¿é¨è¯¾ç¨çä¸»è¦åå®¹åæ¬ï¼åºæ¬åéååå­¦æ¹ç¨ãæ°å­¦æ±è§£åçãç¦»æ£ç»æåè¿ç»­ä½çæéååæå®ç°ãåç§åºç¨é¢åãæéååæçè½¯ä»¶å¹³å°åå»ºæ¨¡æå·§ç­ãå¨å¼ºè°æéåçè®ºçå·¥ç¨èæ¯åç©çæ¦å¿µçåæ¶ï¼éè¿ä¸äºå¸åçå®ä¾æ¥æ·±å¥æµåºå°ç³»ç»éè¿°æéååæçåºæ¬åçãæ­¤å¤ï¼è¯¾ç¨åºäºMATLABæ¼ç¤ºåºäºæéååççç¼ç¨æ¹æ³ï¼éè¿ANSYSæ¥å±ç¤ºåºç¨æéåæ¹æ³çå·ä½å»ºæ¨¡è¿ç¨ã