Recommender Systems: Behind the Screen

Academy
edX
Kurzbeschreibung
How are items recommended when you’re browsing for movies, jobs or clothing online? Register here and you’ll discover the fundamental co... mehr...

How are items recommended when you’re browsing for movies, jobs or clothing online? Register here and you’ll discover the fundamental concepts and methods allowing the most relevant item suggestions to users from e-commerce to online advertisement.

weniger
Kursarten
E-Learning
Fachbereich

Informatik

Dieser Kurs ist neu hier. 0 User folgen diesem Kurs und erhalten Bescheid, wenn es Neues gibt - Kurs jetzt folgen.

Du hast den Kurs besucht? Kurs jetzt bewerten.

Hier kannst du der Eggheads Community deine Fragen zu diesem Kurs stellen. Auch Kursleiter können mitdiskutieren.


Frage stellen

Du must angemeldet sein um zu antworten

Kursinhalt
In this course, you will explore and learn the best methods and practices in recommender systems, which are an essential component of the online ecosystem. This course was developed by IVADO and HEC Montréal as part of a workshop that took place in Montreal. You will be accompanied throughout and given concrete examples by seven international experts from both Academia and Industry. Recommender systems are algorithms that find patterns in user behaviour to improve personalized experiences and understand their environment. They are ubiquitous and are most often used to recommend items to users, for example, books, movies, but also possible friends, food recipes or even relevant documentation in large software projects, or papers of interest to scientists. The content of this MOOC is an introduction to the field of recommender systems. The outline includes: machine learning for recommender systems followed by an introduction to evaluation methods; advanced modelling; contextual bandits; ranking methods; and fairness and discrimination in recommender systems. The course is primarily intended for industry professionals and academics with basic (first-year undergraduate) knowledge in mathematics and programming (ideally Python). Graduate students in science and engineering (mainly those who are not yet familiar with machine learning and recommender systems) may find this content instructive and compelling. The content of this course will also be of great use to whomever uses or is interested in AI, in any other way. We estimate that it takes 6 weeks to follow this class. The course is divided into relevant segments that you may watch at your own pace. There are comprehensive quizzes at the end of each segment to evaluate your understanding of the content. You will also practice recommender systems algorithms thanks to a tutorial guided by an expert. Also, a second self-practice module will be offered to participants who will register for the course with the Verified Certificate. We welcome you to this special learning journey of Recommender Systems: Behind the Screen! This course is brought to you by IVADO, HEC Montréal and Université de Montréal. IVADO is a Québec-wide collaborative institute in the field of digital intelligence. HEC Montréal is a French-language university offering internationally renowned management education and research. Université de Montréal is one of the world’s leading research universities.
Kurssprache
Englisch
Kursgebühr
USD 150